Image Evolution Using 2D Power Spectra
نویسندگان
چکیده
منابع مشابه
Content-Based Image Retrieval Using Combined 2D Attribute Pattern Spectra
This work proposes a region-based shape signature that uses a combination of three different types of pattern spectra. The proposed method is inspired by the connected shape filter proposed by Urbach et al. We extract pattern spectra from the red, green and blue color bands of an image then incorporate machine learning techniques for application in photographic image retrieval. Our experiments ...
متن کاملNonlinear evolution of cosmological power spectra
Hamilton et al. have suggested an invaluable scaling formula which describes how the power spectra of density fluctuations evolve into the nonlinear regime of hierarchical clustering. This paper presents an extension of their method to low-density universes and universes with nonzero cosmological constant. We pay particular attention to models with large negative spectral indices, and give a sp...
متن کاملNon-linear stochastic inversion of 2D gravity data using evolution strategy (ES)
In the current work, a 2D non-linear inverse problem of gravity data is solved using the evolution strategies (ES) to find the thickness of a sedimentary layer in a deep-water situation where a thick sedimentary layer usually exists. Such problems are widely encountered in the early stages of petroleum explorations where potential field data are used to find an initial estimate of the basin geo...
متن کامل2D/3D image registration using regression learning
In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues ...
متن کاملFace image super-resolution using 2D CCA
In this paper a face super-resolution method using two-dimensional canonical correlation analysis (2D CCA) is presented. A detail compensation step is followed to add highfrequency components to the reconstructed high-resolution face. Unlike most of the previous researches on face super-resolution algorithms that first transform the images into vectors, in our approach the relationship between ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complexity
سال: 2019
ISSN: 1076-2787,1099-0526
DOI: 10.1155/2019/7293193